
Enabling Concurrent Multithreaded MPI
Communication on Multicore Petascale Systems

Gábor Dózsa1, Sameer Kumar1, Pavan Balaji2, Darius Buntinas2,
David Goodell2, William Gropp3, Joe Ratterman4, and Rajeev Thakur2

1 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
2 Argonne National Laboratory, Argonne, IL 64039

3 University of Illinois, Urbana, IL 61801
4 IBM Systems and Technology Group, Rochester, MN 55901

Abstract. With the ever-increasing numbers of cores per node on HPC
systems, applications are increasingly using threads to exploit the shared
memory within a node, combined with MPI across nodes. Achieving
high performance when a large number of concurrent threads make MPI
calls is a challenging task for an MPI implementation. We describe the
design and implementation of our solution in MPICH2 to achieve high-
performance multithreaded communication on the IBM Blue Gene/P.
We use a combination of a multichannel-enabled network interface, fine-
grained locks, lock-free atomic operations, and specially designed queues
to provide a high degree of concurrent access while still maintaining
MPI’s message-ordering semantics. We present performance results that
demonstrate that our new design improves the multithreaded message
rate by a factor of 3.6 compared with the existing implementation on the
BG/P. Our solutions are also applicable to other high-end systems that
have parallel network access capabilities.

1 Introduction

Because of power constraints and limitations in instruction-level parallelism,
computer architects are unable to build faster processors by increasing the clock
frequency or by architectural enhancements. Instead, they are building more and
more processing cores on a single chip and leaving it up to the application pro-
grammer to exploit the parallelism provided by the increasing number of cores.
MPI is the most widely used programming model on HPC systems, and many
production scientific applications use an MPI-only model. Such a model, how-
ever, does not make the most efficient use of the shared resources within the node
of an HPC system. For example, having several MPI processes on a multicore
node forces node resources (such as memory, network FIFOs) to be partitioned
among the processes. To overcome this limitation, application programmers are
increasingly looking at using hybrid programming models comprising a mixture
of processes and threads, which allow resources on a node to be shared among
the different threads of a process.

With hybrid programming models, several threads may concurrently call
MPI functions, requiring the MPI implementation to be thread safe. In order

to achieve thread safety, the implementation must serialize access to some parts
of the code by using either locks or advanced lock-free methods. Using such
techniques and at the same time achieving high concurrent multithreaded per-
formance is a challenging task [2, 3, 10].

In this paper, we describe the solutions we have designed and implemented
in MPICH2 to achieve high multithreaded communication performance on the
IBM Blue Gene/P (BG/P) system [4]. We use a combination of a multichannel-
enabled network interface, fine-grained locks, lock-free atomic operations, and
message queues specially designed for concurrent multithreaded access. We eval-
uate the performance of our approach with a slightly modified version of the
SQMR message-rate benchmark from the Sequoia benchmark suite [8]. Although
implemented on the BG/P, our techniques and optimizations are also applicable
to other high-end systems that have parallel network access capabilities.

The rest of this paper is organized as follows. Section 2 provides a brief
background of thread safety in MPI and MPICH2 and the architecture of the
Blue Gene/P system. Section 3 describes the design and implementation of our
solutions in detail. Performance results are presented in Section 4, followed by
conclusions in Section 5.

2 Background

We provide a brief overview of the semantics of multithreaded MPI communica-
tion, the internal framework for supporting thread safety in MPICH2, and the
hardware and software architecture of the Blue Gene/P system.

2.1 MPI Semantics for Multithreading

The MPI standard defines four levels of thread safety: single, funneled, serialized,
and multiple [6]. We discuss only the most general level, MPI_THREAD_MULTIPLE,
in which multiple threads can concurrently make MPI calls.

MPI specifies that when multiple threads make MPI calls concurrently, the
outcome will be as if the calls executed sequentially in some order. Blocking
MPI calls will block only the calling thread and will not prevent other threads
from running or executing MPI functions. As a result, multiple threads may
access and modify internal structures in the MPI implementation simultaneously,
thus requiring serialization within the MPI library to avoid race conditions.
Logically global resources, such as allocation/deallocation of objects, context
ids, communication state, and message queues, must be updated atomically.

Implementing thread safety efficiently in an MPI implementation is a chal-
lenging task. The most straightforward approach is to use a single global lock,
which is acquired on entry to an MPI function and held until the function re-
turns, unless the function is going to block on a network operation. In that case,
the lock is released before blocking and then reacquired after the network op-
eration returns. The main drawback of this approach is that it permits little
concurrency in operations.

Optimizations for accessing queues, such as lock-free methods, often re-
quire single-reader/single-writer access, which can be a limitation. Since message
queues are on the critical path, using simpler (classical) approaches with locks
can add significant overhead. Also, locks or lock-free atomic updates themselves
are expensive, even in the absence of contention, because of memory-consistency
requirements (typically, some data must be flushed to main memory, an action
that costs hundreds of cycles in latency).

A further complication is introduced by the feature in MPI that allows “wild-
card” (MPI_ANY_SOURCE) receives that can match incoming messages from any
sender. For any receive (or for matching any incoming message), this feature re-
quires two logical queues to be searched atomically—receives expecting a specific
sender and receives permitting any sender—in a manner that maintains MPI’s
message-ordering semantics. This requirement makes it difficult to allow for con-
currency even in programs written to match receives with specific senders, which
in the absence of MPI_ANY_SOURCE could be implemented efficiently with sepa-
rate queues for separate senders. MPI_ANY_SOURCE implies a shared queue that
all threads must check and atomically update, thereby limiting concurrency.

2.2 Framework for Supporting Thread Safety in MPICH2

Thread safety in MPICH2 is implemented by identifying regions of code where
concurrent threads may access shared objects and marking them with macros
that provide an appropriate thread-safe abstraction, such as a named critical
section. For example, updates to message queues are protected by the MSGQUEUE
critical section. Most MPI routines, other than a few that are intrinsically thread
safe and require no special care, also establish a function-level critical section
(ALLFUNC). Different granularities of thread safety (coarse-grained versus fine-
grained locks or critical sections) are enabled by simply changing the definitions
of these macros in a header file. For example, the simple global lock is imple-
mented by defining the ALLFUNC critical section to acquire and release a global
lock and defining the other macros as no-ops. Finer-grained locking is enabled
by reversing these definitions, that is, defining the ALLFUNC critical section as a
no-op and defining the other named critical sections appropriately.

MPI objects are reference counted internally. This task must be done atomi-
cally in a multithreaded environment. The reference-count updates are handled
by a macro that can be defined to use a simple update (in the case of the single
global lock), processor-specific atomic-update instructions, or a reference-count
critical section.

In the few instances where using these macros is not convenient, we use C-
preprocessor #ifdefs directly. Since this approach makes the code harder to
maintain, however, we try to avoid it and instead rely as much as possible on a
careful choice of abstractions with a common set of definitions. Using carefully
chosen abstractions makes it easier to switch from a coarse-grained, single-lock
approach to a finer-grained approach that permits greater concurrency.

2.3 Blue Gene/P Hardware and Software Overview

The IBM Blue Gene/P is a massively parallel system that can scale up to 3 PF/s
of peak performance. Each node of the BG/P has four 850 MHz embedded Pow-
erPC 450 cache-coherent cores on a single ASIC and can achieve a peak floating-
point throughput of 13.6 GF/s per node. The nodes are connected with three
networks that the application may use: a 3D torus network, which is deadlock
free and provides reliable delivery of packets; a collective network, which imple-
ments global broadcast and global integer arithmetic operations; and a global
interrupt network for fast barrier-synchronization operations. Each node has a
direct memory access (DMA) engine to facilitate injecting and receiving packets
to and from the torus network. This feature allows the cores to offload packet
management and enables better overlap of communication and computation.

The MPI implementation on the BG/P is based on MPICH2 [7] and is layered
on top of a lower-level messaging library called the Deep Computing Messaging
Framework (DCMF) [5]. DCMF provides basic message-passing services that
include point-to-point operations, nonblocking one-sided get and put operations,
and an optional set of nonblocking collective calls. MPICH2 is implemented on
the BG/P via an implementation of the internal MPID abstract device interface
on top of DCMF, called dcmfd. The currently released version supports the
MPI_THREAD_MULTIPLE level of thread safety by using the simple, unoptimized
approach of a single global lock.

The DMA engine on each node supports 32 injection FIFOs and 8 reception
FIFOs per core, an important feature for the work described in this paper. The
operating system on the node supports a maximum of four threads, in other
words, at most 1 thread per core. Although this limit is much smaller than what
is allowed on commodity multicore/SMP platforms, those platforms typically do
not offer sufficient parallelism at the network-hardware level that concurrently
communicating threads could exploit. On such systems, the MPI implementation
would need to serialize accesses to network hardware and operating-system re-
sources and thus would not result in scalable multithreaded communication per-
formance. A commodity-cluster node would need at least four NICs to provide a
level of network parallelism comparable to a BG/P node. Therefore, despite the
relatively modest number of threads allowed on a BG/P node, the parallelism
in the network hardware makes it an interesting platform for studying how to
optimize multithreaded MPI communication.

3 Enabling Concurrent Multithreaded MPI
Communication on BG/P

To achieve high-performance multithreaded MPI communication on the BG/P,
we redesigned multiple layers of the communication-software stack. We enhanced
both DCMF and MPICH2 to support multiple communication channels between
pairs of processes, such that communication from multiple threads on different
channels can take place concurrently. We also modified the data structures and

algorithms used to implement message queues in MPICH2 in order to enable
message-queue manipulations in parallel on a channel basis. In the following
subsections, we describe all these optimizations.

3.1 Multichannel Extensions to DCMF

In the existing design of DCMF, only one abstract DMA device is instanti-
ated per MPI process. This single DMA device allocates one injection/reception
FIFO group and provides a single access point for the underlying DMA hardware
resources. We extended DCMF to have multiple DMA devices that allocate mul-
tiple injection/reception groups for each MPI process. For example, in BG/P’s
SMP mode, where a program runs with one process and up to four threads on
each node, four DMA devices are instantiated that allocate four injection and re-
ception groups. In BG/P’s dual mode, with two MPI processes with two threads
each per node, each process instantiates two DMA devices. Multiple threads
of an MPI process can access these DMA software devices independently and
in parallel. DCMF encapsulates DMA devices into software abstractions called
channels. A channel assigns a mutex to control access to a particular DMA
device.

API Changes To allow threads to lock channels, we added two new calls to the
DCMF API: DCMF_Channel_acquire and DCMF_Channel_release. The rest of
the API remained unchanged. In particular, we did not add new arguments for
DCMF_Send to specify a send channel. Instead, the new DCMF_Channel_acquire

call saves the ID of the locked channel in thread-private memory. Subsequent
calls to send functions use this thread-private information to post messages to the
DMA device currently locked by the executing thread. Send function calls specify
the same DMA group ID for both injection and reception of a message; that is, by
locking a channel, the sender thread implicitly also defines the reception channel
at the destination for outgoing messages.

This approach to extending the API has the advantage that it requires min-
imal changes in upper levels of software that call DCMF. It has the drawback of
limited flexibility, however; for example, it cannot specify different send and re-
ceive channels for a particular message. We plan to explore a more full-featured
API that provides greater flexibility.

Progress Engine The generic DMA progress engine in DCMF ensures that
pending outgoing and incoming messages are processed. We extended the progress
engine to support multiple channels. Ideally, each channel is advanced by a sep-
arate thread, which results in fully parallel progress of the DMA devices. For
instance, in the SMP mode, four MPI threads can run on the four cores and make
progress on only their corresponding channels. This scheme, however, assumes
that all four MPI threads are always active; that is, all of them issue DCMF
advance calls eventually, so that pending messages are processed at some point
on every channel. If all the threads are not active, this fully parallel progress

approach may fail. For instance, a multithreaded MPI application may enter a
global barrier by issuing MPI_Barrier calls from threads running on different
cores on the different nodes. Only one thread will call the barrier function on
each node, and the other threads may be simply blocked (or not even started
yet) until the global barrier completes. This situation can lead to a deadlock if
a barrier message arrives at a node on a channel that is not advanced by the
thread executing the barrier call.

In order to comply with MPI progress semantics, each thread must eventually
make progress on every channel. For thread safety, we also need to prevent
multiple threads from accessing the same channel simultaneously. A call to the
DMA progress engine causes progress by attempting to lock a channel; if the
lock succeeds, the DMA device of the channel is advanced and the channel
is unlocked. Making progress on multiple channels instead of just one channel
implies higher overhead, which can hurt message latency on the low-frequency
BG/P cores. However, it must be done at least occasionally in order to satisfy
MPI progress semantics. For this purpose, we use an internal parameter (say, n)
to decide how often a thread will attempt to advance other channels. A thread
will normally advance only its own channel; but on every nth call to the progress
function, it will also try to advance other channels. Thus, all threads can make
independent parallel progress most of the time, while still guaranteeing MPI
progress semantics.

3.2 Exploiting Multiple Channels in MPICH2

The current MPI 2.2 standard does not directly translate the notion of multiple
communication channels into a user-visible concept. For the upcoming MPI-3
standard, Marc Snir has proposed extending MPI to support multiple “end-
points” per process [9], which would map cleanly to our definition of channels.
Until such explicit support becomes part of the standard, however, MPI can take
advantage of multiple channels only in an application-transparent fashion, that
is, by using multiple channels internally without exposing them to the user.

We modified the dcmfd device in MPICH2 to select and acquire an appro-
priate channel by calling DCMF_Channel_acquire(channel) immediately before
issuing a DCMF send call. After the send call completes, the channel is released.
We calculate the channel for a particular message by means of a simple hash
function: channel = (source + dest) mod num channels. Selecting the chan-
nel based on the source and destination ranks in this manner has the following
desirable implications:

– Messages sent on a given communicator from a particular source to the same
destination process travel over the same channel. This feature makes it easy
for us to support MPI’s non-overtaking message-ordering semantics, which
require that messages from the same source to the same destination appear
in the order in which they were sent.

– Messages sent to a particular destination node from different sources are
distributed among the available reception channels. This feature enables in-
coming messages to be received in parallel.

Truly parallel processing of incoming messages at the MPI level also requires
support for parallel message matching, as described below.

3.3 Parallel Receive Queues

MPICH2 has two receive queues implemented via linked lists: a queue of receives
posted by the application and a queue of unexpected messages, namely, messages
that were received before the application posted the matching receive. When an
application posts a receive, the unexpected-message queue is first searched for a
matching message. If none is found, the receive is enqueued on the posted-receive
queue. Similarly, when a message is received from the network, the posted-receive
queue is first searched for a matching receive. If none is found, the message is
enqueued on the unexpected queue.

We parallelized the receive queues by providing a separate pair of posted- and
unexpected-receive queues for each source rank. In this case, an additional queue
is needed to hold posted wildcard receives (source=MPI_ANY_SOURCE). When a
message is received from the network and a matching receive is not found in the
posted-receive queue for the corresponding channel, the progress engine checks
the wildcard queue. If the wildcard queue is not empty, the progress engine
acquires the wildcard-queue lock and searches the queue for a match. If a match
is not found, the message is enqueued on the channel’s unexpected queue.

A complication is introduced when a posted wildcard receive is followed by
a non-wildcard receive with a matching tag. Since MPI’s message-ordering se-
mantics require that the wildcard receive be matched first and since MPICH2’s
progress engine first searches the channel-receive queues, we queue the non-
wildcard receive in the wildcard queue. When the wildcard receive is matched
and removed from the wildcard queue, we move the non-wildcard receive into
its channel queue.

4 Performance Results

node0

node1

node2

node3

node4

Fig. 1. Communication pattern of
the Neighbor Message Rate Bench-
mark

Currently, there is no canonical bench-
mark suite or application to measure mul-
tithreaded messaging efficiency of MPI.
Also, the MPI_THREAD_MULTIPLE mode is
often not efficiently supported by exist-
ing MPI implementations, which in turn
deters applications from using it. The
commonly used NAS Parallel Benchmarks
(NPB) [1] are not multithreaded. The
multi-zone variants of the NAS Paral-
lel Benchmarks (NPB-MZ) [11] do use
MPI+threads via OpenMP, but they use
only the MPI_THREAD_FUNNELED level of
thread safety.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 1 2 3 4

m
e
s
s
a
g
e
-
r
a
t
e

(
M
M
P
S
)

threads

Optimized stack
Default stack

Fig. 2. Message rate performance of
default and optimized software stacks
on BG/P

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4

m
e
s
s
a
g
e
-
r
a
t
e

(
M
M
P
S
)

threads

MPICH2
DCMF

Fig. 3. Message rates with the opti-
mized stack when using MPI versus di-
rect DCMF

We chose message rate as a metric to measure messaging performance. We
used a slightly modified version of the SQMR Phloem microbenchmark from the
Sequoia benchmark suite [8]. Specifically, the original SQMR code runs single-
threaded MPI processes; we adapted it for multithreaded processes running in
MPI_THREAD_MULTIPLE mode.

The modified benchmark, which we call the Neighbor Message Rate Bench-
mark, measures the aggregate message rate for N threads in a single MPI pro-
cess, each sending to and receiving from a corresponding peer process on a sep-
arate node, as shown in Figure 1. Each iteration of the benchmark involves each
thread posting 12 nonblocking receives and 12 nonblocking sends from/to the
peer thread, followed by a call to MPI_Waitall to complete the requests. Each
thread executes 10 warm-up iterations before timing 10,000 more iterations. We
used zero-byte messages in order to minimize the impact of data-transfer times
on the measurements. The benchmark reports the total number of messages sent
(in millions) divided by the elapsed time in seconds. We evaluate our solution
based on the overall message rate of the “root” process and the scaling of the
message rate with the number of threads.

We ran the benchmark on the BG/P and varied the number of threads from
1 to 4. We also ran it in the MPI_THREAD_SINGLE mode to determine the best
achievable performance for a single thread without any locking overhead. Fig-
ure 2 shows the results with the default production BG/P software stack and
with our optimized DCMF and MPICH2. (The case with 0 threads represents the
MPI_THREAD_SINGLE mode.) The performance with the optimized stack is much
better than with the default stack where the message rate actually decreases with
the number of threads. With 4 threads, the message rate with optimized stack
is 3.6 times higher than with the default stack. Scaling is not perfect though; we
observe an average 10% degradation per thread from linear scaling.

To locate the source of this scaling degradation and to measure the MPI over-
head in general, we also implemented a DCMF version of the Neighbor Message
Rate Benchmark, which directly makes DCMF calls. Figure 3 shows the results
of running both the MPI and DCMF versions of the benchmark with our opti-

mized stack. The performance with direct DCMF is much higher than with MPI.
We believe this difference is because DCMF is a much simpler, lower-level API.
MPI’s message-ordering and matching semantics as well as the notion of commu-
nicators, etc., make it more difficult to optimize for multithreading. Nonetheless,
the magnitude of the difference suggests room for further optimization, which we
plan to investigate. Locking overhead for dynamic channel selection and receive-
queue management for message matching are two areas that we specifically plan
to optimize further. We also expect that the new proposal for multiple endpoints
in MPI-3 [9] will help alleviate some of the bottlenecks at the MPI level.

5 Conclusions

Running MPI applications in fully multithreaded mode is becoming a significant
issue as a result of the increasing importance of hybrid programming models
for multicore high-end systems. We have presented a solution to achieve high
messaging performance in MPICH2 when multiple threads make MPI calls con-
currently. We use a combination of a multichannel-enabled network interface,
fine-grained locks, lock-free atomic operations, and message queues specifically
designed for concurrent multithreaded access. We introduce the “channel” ab-
straction as the unit of parallelism at the network-interface level and show how
MPICH2 can take advantage of channels in a user-transparent way. Applying our
optimizations on the Blue Gene/P messaging stack, we demonstrate a factor of
3.6 improvement in multithreaded MPI message rate. Furthermore, the message
rate scales reasonably with the number of MPI threads in our optimized stack,
as opposed to the default stack where the aggregate message rate decreases with
multiple threads. We plan to investigate further optimizations to improve MPI
performance compared with native DCMF performance.

The proposed solutions and optimizations for defining and managing multiple
network “channels” are also applicable to other high-end systems with parallel
network access capabilities. Implementation details will, of course, differ as they
depend on the particular messaging software stack, but the techniques we have
described for providing access to multiple network channels from concurrent
MPI threads and managing progress on multiple channels in parallel should be
directly applicable.

Acknowledgments

This work was supported in part by the U.S. Government contract No. B554331; the
Office of Advanced Scientific Computing Research, Office of Science, U.S. Department
of Energy, under contract DE-AC02-06CH11357 and DE-FG02-08ER25835; and by the
National Science Foundation under grant #0702182.

References

1. Bailey, D., Harris, T., Saphir, W., Wijngaart, R.V.D., Woo, A., Yarrow, M.: The
NAS parallel benchmarks 2.0. NAS Technical Report NAS-95-020, NASA Ames
Research Center, Moffett Field, CA (1995)

2. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Thakur, R.: Fine-grained mul-
tithreading support for hybrid threaded MPI programming. International Journal
of High Performance Computing Applications 24(1), 49–57 (2010)

3. Gropp, W., Thakur, R.: Thread safety in an MPI implementation: Requirements
and analysis. Parallel Computing 33(9), 595–604 (September 2007)

4. IBM System Blue Gene solution: Blue Gene/P application development. http:
//www.redbooks.ibm.com/redbooks/pdfs/sg247287.pdf

5. Kumar, S., Dozsa, G., Almasi, G., Heidelberger, P., Chen, D., Giampapa, M.E.,
Blocksome, M., Faraj, A., Parker, J., Ratterman, J., Smith, B., Archer, C.J.: The
Deep Computing Messaging Framework: Generalized scalable message passing on
the Blue Gene/P supercomputer. In: Proceedings of the 22nd International Con-
ference on Supercomputing. pp. 94–103. ACM, New York (2008)

6. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
Version 2.2 (September 2009), http://www.mpi-forum.org

7. MPICH2. http://www.mcs.anl.gov/mpi/mpich2
8. Sequoia benchmark codes. https://asc.llnl.gov/sequoia/benchmarks/
9. Snir, M.: MPI-3 hybrid programming proposal, version 7. http://meetings.

mpi-forum.org/mpi3.0_hybrid.php

10. Thakur, R., Gropp, W.: Test suite for evaluating performance of multithreaded
MPI communication. Parallel Computing 35(12), 608–617 (December 2009)

11. Wijngaart, R.V.D., Jin, H.: NAS parallel benchmarks, multi-zone versions. NAS
Technical Report NAS-03-010, NASA Ames Research Center, Moffett Field, CA
(2003)

